
Neural Networks and TensorFlow

Dominik Grüneis and Lukas Hubl

I. ARTIFICIAL NEURAL NETWORKS

A. Introduction to artificial neural networks

Neural networks are computer programs which try to
imitate the principle of the biological brain to solve certain
kinds of problems. Normal computer programs compute
completely different than the human brain as most programs
operate in a linear way. Most tasks the human brain is
capable of doing would need days of calculation on a
conventional computer program. The reason why the human
brain is able to solve tasks like image recognition is, that
the brain is able to learn and build up experience to solve
such tasks.[1] Most people consider machine learning as a
brand-new technology solving computational problems in the
future. In fact, Aristotle (384-322 B.C.) was the first who
tried to build an informal system of logical conclusions for
accurate argumentation.[2] Which is nothing more but the
attempt to create some sort of ”artificial intelligence”. The
origin of computer based artificial intelligence, machine- and
deep learning concepts date back to the 1940s, where it was
first called ”cybernetics”. In the 1980s the name changed
to ”connectionism” until the terms ”machine learning” and
”deep learning” were commonly used since the 2000s. Al-
though there were different terms over time, all of them are
referring to the same elementary concept, trying to solve
computational problems by reproducing the brains way of
learning and reacting based on its knowledge. Hence the
name artificial neural networks.

B. Architecture of a artificial neural network

A main goal of an artificial neural network is to reproduce
the biological architecture of the human brain in a program-
matical way. The cell inside the human brain which computes
the signals is called a neuron. A normally operating brain
has billions of these cells to process information.[3] So to
create an artificial neural network it is essential to create a
artificial neuron. Fig.1 shows the biological architecture of a
neuron. A neuron consists of dendrites which are recieveing
impulses of other neurons, the cell body and the axon which
sends impulses to other cells. A neuron is recieving signals
from other neurons which increase or decrease the electrical
potential of the cells nucleus. If this neuron reaches a specific
threshold, the neuron sends out a signal via the axon. This
signal is then recieved by other cells and processed in the
same way.[4]

To simulate this behaviour a artificial neuron uses
weighted inputs to simulate the dendrites. These inputs are
combined inside a transfer function which the sends the
combined input to an activation function. This activation

Fig. 1. neuron[5]

function simulates the threshold of nucleus of the biological
neuron. For example the sigmoid function shown in fig.3is
often used as an activation function. The advantages of the
sigmoid function is, that it is a non linear function which has
the advantage to be capable of non binary activations, which
means that it gives an analog output unlike a normal step
function. It also has the characteristic to react significantly
to changes around zero, which is good for a classifier. The
output of the activation function is either sent to another
artificial neuron or it is interpreted as an output. Artificial
neurons are often called nodes in the technical context. Fig.2
shows how an artificial neuron is built. [3]

Fig. 2. artificial neuron[6]

Fig. 3. sigmoid function



As a human brain consist of many neurons, an artificial
neural network has to consist of many artificial neurons as
well. The artificial neurons are organised in layers as shown
in Fig.4. It is differentiated between input layers, hidden
layers and output layers. Input layers get their input from
the general system input and send their output to the hidden
layers. Hidden layers get their input from the input layer
nodes and send their output either to another layer of hidden
layer nodes or to output layer nodes. Output layer nodes get
their input from hidden layer nodes and send their output to
the general system output. It is also possible to design an
artificial neural network without a hidden layer,but most of
the time these aren’t as performant.[1]

Fig. 4. artificial neural network

C. Functionality of a artificial neural network

As stated in the I-A the main reason why a brain is able to
solve complex tasks rather quickly and easily is because the
brain can adapt and learn. So to make a functioning artificial
neural network, a learning feature has to be implemented. In
the world of programming, learning means adapting specific
variables. This is were the weigths of an artificial neuron are
used. These weights are scaling the input of a node and de-
cide how much an input is contributing to the combined input
of a node. Therefore for a working artificial neural network,
the weights have to be set the right way. A way to set the
weights is by feeding teaching patterns to the network and
let it set it’s weight according to an algorithm. The probably
most used algorithm for such learning is the backpropagation
algorithm.[3] The backpropagation algorithm propagates the
error back to the different weights of the nodes. The error
is the square of the target output value and the actual output
value of the neural network.

error = (t− o)2 (1)

This error has to be distributed to the weigths of every node
in every layer with the function. For example to distribute

this error in a network with one hidden layer and the sigmoid
function as activation function the following formula can
used:

δE

δwjk
= −(tk − ok)− sigmoid(

∑
j
wjk · oj)

· (1− sigmoid(
∑

j
wjk · oj)) · oj (2)

This formula means that the delta of a specific weight is
the negative overall error of the network multiplied with
the differentiated output of the node k (sigmoid(

∑
j wjk ·

oj)(1−sigmoid(
∑

j wjk·oj)))and multiplied with the output
of the node j(oj). This partial error isn’t completely added
or substracted from the specific weight. A factor is added
called the learning rate α which prevents that a weight is is
reacting too much to a single error. This prevents the system
to be completely disfunctional if a teaching pattern would
be wrong. So the value of the updated weight is:

wjkNew = wjkOld − α · δE

δwjk
(3)

[7]

D. Use Cases for artificial neural networks

Now the question is, where is it beneficial to use artificial
neural networks. The following use cases should show the
variety of utilization of artificial neural networks.

Infrastructure: Electric load forecasting: Electric load
forecasting is getting more important with the increasing use
of sustainable energy sources like wind or solar energy where
the energy production isn’t constant over time. Therefore
artificial neural networks are used to predict the power usage
and to allocate energy reserves. [8]

Medicine: Diagnosis of Myocardial Infarction: In this
case a artificial neural network model is used to determine if
a patient with anterior chest pain has an myocardial infarction
[9]

Medicine: Mammography: Using a artificial neural net-
work to help radiologist in the analysis of mammographic
data with the ambition to identify breast cancer [10]

Economy: Stock market prediction: The main goal of this
usage is to train a artificial neural network to forecast the
stock market exchange rates.[11]

E. Usage in todays technology

Artificial neural networks aren’t just experimental any-
more. Following companies use them in their products.

Netflix: Recommendation engine: Netflix uses artificial
neural networks to improve their user experience by showing
better movie and series recommendations to them.

Amazon: Alexa speech recognition: Amazon uses artificial
neural networks to improve their speech recognition in their
Alexa system

Microsoft: Skype language translation: Used in a skype
feature which recognizes users speech and converts it to
translated text in real time.

Apple: Face ID: Apple is using this technology in their
Face ID system.



II. TENSORFLOW ™

A. Introduction to TensorFlow™

TensorFlow™is an open source software library for nu-
merical computation particularly designed for large-scale
machine and deep learning. It was originally developed
by Googles brain team, conceived for both production and
research. First released on November 9th of 2015, its now
running version 1.8.0. A major benefit of TensorFlow™is
its ability to break up the computation graph in multiple
sub-graphs and run them across serveral CPUs, GPUs or
TPUs on either Windows, MacOS or Linux as well as iOS
and Android. TensorFlow™is certainly the most popular
machine learning framework by now due to its scalability,
flexibiliy and great documentation. SAP, Dropbox, Intel,
AMD, NVIDIA and Airbnb are only a few companies using
TensorFlow™for their needs.[12][5]

B. Architecture and Principles of TensorFlow™

TensorFlows™approach on creating numerical computa-
tions is to differentiate between the definition of com-
putations by designing a data flow graph in Python and
the actual computation of the graph by TensorFlow™using
highly optimized C++ code.[5] The graph defining what and
how to calculate later on consists of multiple nodes (tensors,
operations) in order to form a numerical computation.

C. Tensors

A Tensor is a mathematical unit used to integrate scalars,
vectors, matrices and other units of analog structure into
a consistent scheme to describe mathematical and physical
relations. [13]. So in TensorFlow™tensors represent data in
a specified dimension. This means a 0-D tensor is a scalar,
a 1-D tensor represents a vector, a 2-D tensor an array and
so on.

D. Constants

Constants are constant tensors created by Tensor-
Flows™tf.constant() operation returning a constant
tensor on success.[12] Compared to variables, the difference
beyond the missing initialisation is that constants are stored
in the graph definition. Assuming a lot of big constants in
the graph definition might make loading them expensive.
So constants should only be used for small data whereas
variables for bigger data.

E. Variables

Variables are tensors whose value could be manipulated by
the program. In contrast to constants which are created by the
tf.constant() operation, variables have to be initialized
in order to be able to use them. The session itself allocates
memory to save the variable values so it is not saved in the
graph definition like constants. To define a variable the first
step is to call the tf.get variable() operation which
takes several parameters.

Creating variables with tf.get variable() performs
reuse checks.[12] This means, if there is already a
variable defined in the current scope whose parameters

are identically, it gets this variable, otherwise it creates
a new one. To be able to use the variable the second
step is to run the variables initializer in a session like
session.run(my variable.initializer). To
initialize all the variables in the graph at once use the
session.run(tf.global variables initiali-
zer()) function.[14]

F. Placeholders

Placeholders are used when its not known which values
should be fed into a tensor later on. It is similar to defining a
function in programming. The data type of an input parame-
ter is defined but the concrete value of it is unknown until the
function is being called. Like variables which may not have
been initialized, placeholders also produce an error if there
was no value fed before evaluation. Creating placeholders is
done using the tf.placeholder() operation.

Feeding values to placeholders uses TensorFlows ™ feed-
ing mechanism feed dict. [12]

G. Operators

To be able to work with different constants, variables and
placeholders, the graph is lacking of operations between the
data. TensorFlow™provides a huge variety of operations

• arithmetic operations
• basic math functions
• matrix math functions
• tensor math functions
• complex number functions
and many more.[12] These functions are also used when it

comes to defining a graph and they work like links between
the variety of data coming into the data flow.

H. Visualization

To get a better overview of the graph TensorFlow™offers
a tool called TensorBoard. To be able to visualize the
data flow graph TensorBoard needs a directory it can find
the graph information in a specified format in order to
be able to visualize it. To provide these serialized form
of graph data TensorFlow™offers FileWriter objects.
FileWriters are able to take the data flow graph, serial-
ize it and save it to a specified location in the file sys-
tem. Now that the graph is available in the right for-
mat, TensorBoard can be launched by tensorboard
--logdir=path/to/log-directory. This opens a
Web-Application as shown in Fig. 5, accessible from your
browser at localhost:6006, allowing the user to see the
data flow graph with all its nodes and tensors.[5][14]

I. Optimizer

As described in C. Functionality of a
artificial neural network, the major challenge
is to simulate the human brains capability to learn. So in
artificial neural networks there are a bunch of techniques
and algorithms trying to decrease the output error to its
minimum, each of them working better than others in
different situations. One of the simplest, basic optimizers



Fig. 5. TensorBoard Interface

however is the gradient descent algorithm due to its wide
range of applicability. The general idea behind the algorithm
is to adjust the parameters iteratively in order to find the
best fitting parameter setup for the specified problem. It
is pretty much like being on a mountain and trying to get
down to the valley as fast as possible, given there is so
much fog someone could barely see. The way gradient
descent would try to solve this problem is trying to find
the steepest slope downwards from the actual position and
take a step down that direction. Now that the position has
changed it would again check for the steepest slope and
take another step. Continuing this strategy over and over
again would probably lead to the foot of the mountain. [5]
Each of these steps towards the valley could be seen as a
single iterative step of learning towards the minimum of the
error function. Fig. 6 shows the learning process decreasing
the error in each learning step. Whilst the concept behind
Gradient Descent seems pretty straight forward, there are
two characteristics which are very important.

Fig. 6. Gradient Descent [5]

1) Learning rate: Defines the amount of change which
will be applied to the parameters of a neural network in a
single learning iteration. The key goal is to pick the learning
rate in a way that on the one hand, learning the network will
not take away too much time which would happen if the
learning rate is too small, visualized in Fig. 7. And on the
other hand it must not be too large which in turn could lead
to the problem of getting worse with every iteration.

2) Initial parameter setup: As Fig. 6-9 show, there is
always a certain point on the error curve which serves as
a starting point. The position of that starting point depends
on the initial parameter setup of the neural network. Taken

Fig. 7. Small learning rate[5]

Fig. 8. Large learning rate[5]

into consideration that the error function curve is mostly not
as trivial as shown in these figures, means, that there may
be certain situations in which Gradient Descent will not be
able to find the global minimum of the error function due to
local minima or too less iterations, ending up on a plateau.
Fig. 9 shows these two cases.

Fig. 9. Gradient Descent pitfalls[5]

Aside of implementing the optimizers all from scratch,
TensorFlow™provides a variety of different optimizers out
of the box which are adjustable in learning rate and other
optimizer specific hyperparameters.

J. Decentralized computing

The support of distributed computing is one of Tensor-
Flows ™biggest advantages over other machine learning
frameworks. Having the opportunity to save some time by



distributing the computations on several devices leads to
more flexibility when it comes to retraining the model or
experimenting with hyperparameter configurations. [5]

K. Multiple devices on a single machine

The idea is to use multiple devices (GPUs) connected
to a single machine (PC) to distribute the computations
to. A major advantage over the distribution across multiple
machines is that all devices are connected to one computer
so there is no network communication needed which would
cost time. Using multiple devices in TensorFlow™requires
the following 4 steps.[5]

• The GPUs need NVIDIA Compute Capability version
3.0 or higher

• CUDA (NVIDIAs Compute Unified Device Architec-
ture library) hast to be installed in order to use the GPU
for other purposes than just graphics rendering

• cuDNN (NVIDIAs CUDA Deep Neural Network li-
brary) which serves pre-implemented, commonly used,
deep neural network specific computations like normal-
isation or pooling.

• Install TensorFlow™with GPU support.

Fig. 10. TensorFlow uses CUDA and cuDNN to control GPUs and boost
DNNs [5]

L. Simple Placer

To determine which node belongs to which device, Ten-
sorFlow™uses the Simple Placer. Simple Placer follows the
following three rules:

• Already assigned nodes stay untouched.
• If the user defined a device for a node, the Simple Placer

assigns it appropriately (if possible).
• If the node has no user defined device and is not

already assigned, Simple Placer assigns it to GPU:0
(GPU mode) or CPU:0 (CPU mode) per default.

In certain cases it may occur that the device on which
the node should run on is not capable of doing that spe-
cific operation. This means the device has no appropriate
kernel (implementation to execute the operation). In these
cases TensorFlow™would throw an exception unless Soft
Placement is activated. If thats the case, TensorFlow™falls
back to the CPU. [5]

M. Parallel execution

Once all the nodes are assigned to a specific device, the
evaluations can start. As there are multiple nodes assigned to
a single device TensorFlow™manages two kinds of thread
pools. The inter-op thread pool which is used for parallel
evaluation of different nodes and the intra-op thread pool
which handles node intern parallelization if the operation
has a multi-threaded kernel. [5]

Fig. 11. Thread Pools

N. Dependencies

As some nodes require the outputs of other nodes as
an input, there may be multiple dependencies. Therefore
TensorFlow™counts the dependencies for every node in the
graph and starts evaluating the zero dependency nodes. After
these nodes are evaluated, other nodes which depend on
them are ready to evaluate. In some cases it may be useful
to delay the evaluation of certain nodes although all their
dependencies are fulfilled. One case would be some kind of
memory heavy operation. In this situation it would be useful
to postpone the operation until the result is immediately
needed in order to save some RAM which may be used
by other operations. Another situation would be I/O heavy
operations which depend on external data. Its recommended
to execute them serially in order to keep some bandwidth for
other operations instead of totally occupying all of it. [5]

REFERENCES

[1] S. Haykin and N. Network, “A comprehensive foundation,” Neural
networks, vol. 2, no. 2004, p. 41, 2004.

[2] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2010.

[3] A. Abraham, “Artificial neural networks,” handbook of measuring
system design, 2005.

[4] R. S. Snell, Clinical neuroanatomy. Lippincott Williams & Wilkins,
2010.

[5] A. Géron, Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. ”
O’Reilly Media, Inc.”, 2017.



[6] M. Cokun, H. Guruler, A. Istanbullu, and M. Peker, “Determining the
appropriate amount of anesthetic gas using dwt and emd combined
with neural network,” vol. 39, p. 1=10, 02 2015.

[7] T. Rashid, Make your own neural network. CreateSpace Independent
Publishing Platform, 2016.

[8] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg,
“Electric load forecasting using an artificial neural network,” IEEE
transactions on Power Systems, vol. 6, no. 2, pp. 442–449, 1991.

[9] W. G. Baxt, “Use of an artificial neural network for the diagnosis of
myocardial infarction,” Annals of internal medicine, vol. 115, no. 11,
pp. 843–848, 1991.

[10] Y. Wu, M. L. Giger, K. Doi, C. J. Vyborny, R. A. Schmidt, and
C. E. Metz, “Artificial neural networks in mammography: application
to decision making in the diagnosis of breast cancer.,” Radiology,
vol. 187, no. 1, pp. 81–87, 1993.

[11] E. Guresen, G. Kayakutlu, and T. U. Daim, “Using artificial neural
network models in stock market index prediction,” Expert Systems
with Applications, vol. 38, no. 8, pp. 10389–10397, 2011.

[12] TensorFlow, “Official tensorflow website,” TensorFlow, 2018.
[13] C. B. Lang and N. Pucker, Mathematische Methoden in der Physik,

vol. 2. Springer, 2005.
[14] P. G. Chip Huyen, Michael Straka, “Cs 20: Tensorflow for deep

learning research,” in TensorFlow, 2018.


