
PRO-4 Hubl Lukas, Grüneis Dominik Version 1.0

Autonomous Vehicle
steering algorithm

Lukas Hubl




PRO-4 Hubl Lukas, Grüneis Dominik Version 1.0

● Overview

● Phase 1 (Semester 4)

● RC Car

● Image recording

● Steerage

● Image-postprocessing

● Demo

● Further steps

Agenda



Overview

● Big picture – autonomous steering algorithm

● Phase 1 – Creating training and test records

which will be used to train the model

● Phase 2 – Implementing the autonomous

steering algorithm

● Phase 3 – Bachelor thesis – finding the most

suitable AI-framework for autonomous driving

powered by a RaspberryPi



Phase 1

0
1 
Car

Steering

Speed

0
2 

Image recording

Recording angle 

Camera mount

0
3 
Steerage

Java client

Socket communication

Server management



Steering
PWM signal powers a servo motor via GPIO port on the
RaspberryPi. Depending on the signal form the car
changes it‘s steering angle.

01    | Interpreting the steering command

02    | Generating the PWM signal

03    | Sending signal via GPIO port to the servo

04    | Servo moves drag link

05    | Car changes it‘s direction



Speed
PWM signal powers a motor controller via GPIO port on 
the RaspberryPi. Depending on the signal form the car is
accellerating or decellerating

01    | Interpreting the speed command

02    | Generating the PWM signal

03    | Sending signal via GPIO to the motor controller

04    | Motor controller changes revolution speed

05    | Car is moving with appropriate speed



Phase 1

0
1 
Car

Steering

Speed           

0
2 

Image recording

Recording angle  

Camera mount

0
3 
Steering

Java client

Socket communication

Server management



Camera
In order to be able to change the camera angle 
afterwards it is neccessary to design a camera mount
which enables to do so.

01    | Camera position: Hood

02    | Angle is adjustable in two axes

03    | 3D-print



Phase 1

0
1 
Car

Steering

Speed           

0
2 

Camera recording

Recording angle  

Camera mount

0
3 
Steering

Java client

Socket communication

Server management



Network remote 
control

● C++ server on RaspberryPi

● Java client on Windows/MacOS/Linux

● Socket communication

● Sending commands from client to server

via socket according to the

communication protocol



Communication 
protocol

● Based on button pressed/released events

● Designed to easily add further commands

● Two types of steering mechanisms

implemented

Taste Zustand Befehl Aktion des Servers

Left (Keynr. 37) pressed left|pressed\0 Call CarController startLeft -> starts steering left

released left|released\0 Call CarController stopLeft -> stops steering left

Up (Keynr. 38) pressed forward|pressed\0 Call CarController forward -> move forward

released forward|released\0 Call CarController stopForward -> stop moving

Right (Keynr. 39) pressed right|pressed\0 Call CarController startRight -> starts steering right

released right|released\0 Call CarController stopRight -> stops steering right

……….. …... …..……. ………………………..



Image recording

● Recording via PiCamera

● Saving the original images

● Extracting steering angle via shared

memory

● Saving image according to steering angle 

in the appropriate folder (folder for each

steering angle)



Postprocessing

● Original images saved

● Converting images into csv files

● Extracting the steering angle



Demo



PRO-4 Hubl Lukas, Grüneis Dominik Version 1.0

● Driving the car in order to create as much training records as possible

● Autonomous steering

● Finding the most suitable model for this problem

Further steps



Thank you for your
attention


